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INTRODUCTION

The Navy has been looking for a reliable and accurate method for measuring
optical depth. or visibility, for quite a few years. The lidar has been suggested as a possible
tool to do this (Lentz, 1982). Single-lidar techniques, however, suffer from the difficulty of
having two unknowns, but only one equation. Inversion techniques have been proposed to
try to avoid this limitation (Klett, 1981.1985). These techniques require that some assump-
tions be made about atmospheric conditions. Among the most common of these assump-
tions are that the atmospheric conditions are horizontally homogeneous and that the
backscatter-to-extinction ratio is a constant.

Some scientists have used multiple-elevation-angle range-corrected lidar returns,
S( R). to determine the integrated optical extinction in the vertical direction (Spinhirne et
al., 1980- Russell and Livingston, 1984). In order for this to be a useful method, the atmos-
phere must be horizontally homogeneous, a condition that frequently does not exist.
Russell and Livingston say that both they and Spinhirne et al. have found that, within the
convective layer. the atmospheric backscattering coefficient rarely if ever has the degree of
horizontal homogeneity required. Additionally, both the transmitted power and the back-
scattered lidar signal must be accuiately measured.

The use of this method to get optical depth in the vertical has recently been
suggested by Kunz (1988), se it was thought worthwhile to take another look at it.

Rarely, if ever, is horizontal homogeneity found in the San Diego area. In fact, in
,ome cases the degree of inhomogeneity is very pronounced (Paulson, 1986). Even though
this is true. some measurements will be made using this technique to see what the results
might look like.

MATHEMATICAL DERIVATION

For purposes of this study, assume the atmosphere to be horizontally homogeneous
with an extinction coefficient, a(h), that varies only in the vertical direction. In Fig. 1 01
and O, are the elevation angles for lidars I and 2. respectively.

For a vertical lidar shot (01 = 0, = 90 degrees) the power received from a scattering
element at height h1 is determined from the single-scatter lidar equation to be

P(h) = Cfl(h) exp 2 f u(h')h" (I)

where /3(h) is the backscatter coefficient and C is the instrumentation constant. Then the
power received from an altitude h, along a slant path R, elevated d) degrees is P(R 1 ) and
along a slant path R, elevated 0, degrees is P(R 2 ) where

P(Ri)- exp 2f h(h')dh' sin0 1  (2)

and

P( R') = exp 2 f o(h1')dh" sin, (3)



h2 R3R

R, R2

Range (kin)

Figure 1. Geometry for two-elevation-angle lidar measurements.

Dividing Eq. 2 by Eq. 3 we get

P(R,)(h, sinO1 )2 
- exp -2 1h 0~h) (4)

or, taking the logarithm of both sides

In [ P )h 1  inO] =2 [ a1j h (h')dh' (5)

and

ha(h')dIh' S(I (r (6)
0o 2(1 sin02- I Sin 6,)

where

Si mila rly

f , cr(h')dIh' S(-)SR)(8)
0o 2(l sinO, I sinO,)
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Then

fh2 ) h2 h
= a(h')dh' a(h')dh '

[S(R)- S(RA)] [S(RI) - S(R 2 )]

2(l sin462 - I sinO,)

MEASUREMENT PROCEDURE

Data were taken on May 17, 1989, while there was a thin overcast layer at about
500 meters. A second set of data was taken on May 24, 1989. At this time there was a
moderate inversion at about 300 meters.

Two visioceilometer lidars were used (Lentz, 1982). A 24-volt dc power supply had
been added to each lidar to improve stability. The lidars were set up at building 323 on the
west side of Point Loma and pointed west overlooking the Pacific Ocean. They were aligned
so that the horizontal cross hair of each lidar was on the horizon. The vertical cross hairs
were aligned on the mast of a sailboat 3 or 4 km away. This assured that the two lidars
were looking at very nearly the same horizontal path. A series of nearly simultaneous shots
were made with this arrangement. Next, without changing the orientation, the elevation
angle of lidar I was increased to 25 degrees and that of lidar 2 was increased to 50 degrees.
A series of nearly simultaneous shots were made with this configuration.

An example of the horizontal shots taken on May 24 is shown in Fig. 2. The two
lidars show quite good agreement. The irregularities observed at close range are probably a
result of on-shore winds striking the bluff and rising.

The S(R) data were plotted as a function of altitude for the two-angle measure-
ments. Figure 3 is an example of these, showing data set 9 for May 17. Figure 4 is the same
thing for data set 8 on May 24. S(R) versus altitude plots for other data sets are shown in
the Appendix.
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Figure 2. An example of parallel horizontal lidar shots. Upper graph is for no
averaging and lower graph is for a 5-point running average.
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Figure 3. An example of two-elevation-angle lidar shots made on 17 May 1989.
Upper graph is for no averaging and lower graph is for a 5-point running average.

5



-1

-3

- -5

-7 low angle

high angle

-9 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Altitude (kmn)

-1

-3

V')

-7
low angle

high angle

-9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Altitude (kin)

Figure 4. An example of two-elevation-angle lidar shots made on 24 May 1989.
Upper graph is for no averaging and lower graph is for a 5-point running average.
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DATA ANALYSIS AND RESULTS

After a 5-point running average was calculated for each lidar return, Eq. 9 was
applied to these data to get a nominal integrated extinction, or optical depth. An upper
altitude, or h , of 475 meters was used for data set 9, taken on May 17. An altitude of
500 meters was used for data sets I 1 and 12 on May 17 and for data sets 8 and 14 on
May 24.

Lower altitude, or h , values from 100 to about 400 meters in 25-meter increments
were used in Eq. 9 to calculate optical depth. These optical depth calculations are listed in
Table I for May 17 and in Table 2 for May 24. The argument here is that, if the atmos-
phere is horizontally homogenous, the optical depth should consistently decrease as h I
increases and the vertical path decreases. As can be seen from Tables I and 2, this is not the
case. For data set 9 the optical depth from 275 to 475 meters, or a 200-meter path, is 0.15
while that from 375 to 475 meters, or a 100-meter path, is 0.49. Similar results occur for
data set I I and data set 12. For data sets 8 and 14 taken on May 24 many of the optical
depth values are negative.

Horizontal inhomogeneities are also evident in the various plots of S(R) versus
altitude found in the Appendix, as well as those shown in Fig. 3 and 4. These inhomogenei-
ties show up as differences in the structure on the two traces.

Table 1. Optical depth calculations made
for different height interva , for data taken
on 17 May 1989.

Data Set 9*

Lower Altitude (m) Optical Depth

100 0.811
125 0.437
150 0.584
175 0.597
200 0.647
225 0.584
250 0.688
275 0.150
300 0.260
325 0.260
350 0.342
375 0.494

*Upper Altitude 475 meters (Contd)
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Table I. Contd.

Data Set I1*

Lower Altitude (m) Optical Depth

100 0.036
125 0.136
150 0.119
175 0.289
200 0.395
225 0.256
250 0.223
275 0.277
300 0.262
325 0.262
350 0.128
375 0.068
400 C. 116

*Upper Altitude 500 meters

Data Set 12*

lower Altitude (m) Optical Depth

100 0.263
125 0,066
150 0.420
175 0.823
200 0.906
225 0.526
250 0.528
275 0.299
300 0.211
325 0.363
350 (P., 56
375 0.418
400 0.382

*tUpper Altitude 500 meters
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Table 2. Optical depth calculations made
for different height intervals for data taken
on 24 May 1989.

Data Set 8*

Lower Altitude (m) Optical Depth

100 -0.150
125 -0.085
150 -0.093
175 -0.116
200 -0.084
225 0.170
250 -0.260
275 -0.054
300 -0.035
325 0.059
350 0.025
375 0.137
400 -0.023

*Upper Altitude 500 meters

Data Set 14*

lower Altitude (m) Optical Depth

100 0.019
125 0.047
150 0.014
175 0.014
200 -0.026
225 0.055
250 0.035
275 0.031
300 0.194
325 0.018
350 0.027
375 0.017
400 0.114

T -er Altitude 500 meters
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CONCL'SIONS

L[idar measurements made at two clc\ation angles cannot be used to dtermine
vertical integrated extincr:c:,,. o;- optical depth, with any degree of accuracy. The atmos-
pheric conditions are not sufficientl\ horizontally homogeneous for this method to work.
This horizontal homogeneity is a requirement of the theory.
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Appendix

GRAPHS OF S(R) VERSUS ALTITUDE FOR 17 MAY 1989 AND 24 MAY 1989
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Figure A-1. S (R) versus altitude for data set 6 through 9 and 11 through 15 taken
on 17 May 1989 and data set 7 through 15 taken on 24 May 1989. The two elevation
angles were 15 degrees and 50 degrees. Upper graph is unsmoothed data and lower
graph is a 5-point running average.
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